

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2012

Marking Scheme

Applied Mathematics

Ordinary Level

General Guidelines

1. Penalties of three types are applied to candidates' work as follows:

Slips- numerical slipsS(-1)Blunders- mathematical errorsB(-3)Misreading- if not seriousM(-1)Serious blunder or omission or misreading which oversimplifies:
- award the attempt mark only.

Attempt marks are awarded as follows: 5 (att 2), 10 (att 3).

2. The marking scheme shows one correct solution to each question. In many cases there are other equally valid methods.

- A car travels along a straight level road. It passes a point *P* with a speed of 8 m s⁻¹ and accelerates uniformly for 12 seconds to a speed of 32 m s⁻¹. It then travels at a constant speed of 32 m s⁻¹ for 7 seconds. Finally the car decelerates uniformly from 32 m s⁻¹ to rest at a point *Q*. The car travels 128 metres while decelerating.
 - Find (i) the acceleration
 - (ii) the deceleration
 - (iii) |PQ|, the distance from P to Q
 - (iv) the speed of the car when it is 72 m from Q.

(i)	v = u + ft		
	32 = 8 + f(12)		
	$f = 2 \text{ m s}^{-2}$	10	
(ii)	$v^2 = u^2 + 2fs$		
	$(0)^2 = (32)^2 + 2f(128)$		
	$f = -4 \mathrm{ms^{-2}}$	10	
(iii)	$s = ut + \frac{1}{2}at^2$		
	$s_1 = 8(12) + \frac{1}{2}(2)(144)$		
	$s_1 = 240$ m.	10	
	$s_2 = 32 \times 7$		
	= 224 m	5	
	$s_3 = 128 \text{ m}$		
	PO = 240 + 224 + 128		
	IQ = 240 + 224 + 128 = 502 m	5	
	- 372 111	5	
(iv)	$v^2 = u^2 + 2 fs$		
()	$(0)^2 = u^2 + 2(-4)(72)$		
	$u = 24 \text{ m s}^{-1}$	10	50
		1	1

2. Ship A is positioned 80 km south of ship B. A is moving north-east at a constant speed of $30\sqrt{2}$ km h⁻¹.

B is moving due west at a constant speed of 15 km h^{-1} .

- Find (i) the velocity of A in terms of \vec{i} and \vec{j}
 - (ii) the velocity of B in terms of \vec{i} and \vec{j}
 - (iii) the velocity of A relative to B in terms of \vec{i} and \vec{j}
 - (iv) the shortest distance between A and B in the subsequent motion.

3. (a) A ball is kicked from a point P on horizontal ground with a speed of 20 m s^{-1} at 45° to the horizontal.

The ball strikes the ground at Q.

- Find (i) the time it takes the ball to travel from P to Q
 - (ii) |PQ|, the distance from P to Q.

(i)
$$s_{y} = ut + \frac{1}{2}at^{2}$$

 $0 = 20 \sin 45 \times t - 5t^{2}$
 $t = 2\sqrt{2} s$
(ii) $s_{x} = ut + \frac{1}{2}at^{2}$
 $|PQ| = 20 \cos 45 \times t + 0$
 $= 20 \times \frac{1}{\sqrt{2}} \times 2\sqrt{2}$
 $= 40 m$
10 20

A particle is projected with initial velocity $21\vec{i} + 50\vec{j}$ m s⁻¹ from point 3 **(b)** P on a horizontal plane. A and B are two points on the trajectory (path) 50 m s of the particle. 80 m 21 m s^{-1} The particle reaches point Aafter 3 seconds of motion. k m The displacement of point *B* from *P* is $\vec{k} \cdot \vec{i} + 80 \cdot \vec{j}$ metres. the velocity of the particle at A in terms of \vec{i} and \vec{j} Find (i) the speed and direction of the particle at A(ii) the value of *k*. (iii)

(i)
$$v = u + at$$

 $v_x = 21 + 0$
 $= 21$
 $v_y = 50 - 10 \times 3$
 $= 20$
 $v = 21 \ \vec{i} + 20 \ \vec{j}$
(ii) $|v| = \sqrt{21^2 + 20^2}$
 $= 29 \ m \ s^{-1}$
 $a = \tan^{-1}\left(\frac{20}{21}\right)$
 $= 43 \cdot 6^{\circ}$
(iii) $80 = 50t - 5t^2$
 $t^2 - 10t + 16 = 0$
 $(t - 2)(t - 8) = 0$
 $t = 8$
 $s_x = ut + \frac{1}{2}at^2$
 $k = 21 \times 8$
 $= 168$
 5

4. (a) Two particles of masses 2 kg and 3 kg are connected by a taut, light, inextensible string which passes over a smooth light pulley.

The system	n is released from rest.		\	
Find (i)	the common acceleration of the particles			
(ii)	the tension in the string.	2 kg	3 kg	
(i)				
(1)	3g - T = 3a		5	
	T - 2g = 2a		5	
	g = 5a			
	$a = \frac{g}{5} = 2 \text{ m s}^{-2}$		5	
(ii)	T = 2g + 2a			
	= 20 + 4			
	= 24 N		5	20

(b) Masses of 9 kg and 12 kg are connected by a taut, light, inextensible string which passes over a smooth light pulley as shown in the diagram.

The system is released from rest.

4

- (i) Show on separate diagrams the forces acting on each particle.
- (ii) Find the common acceleration of the masses.
- (iii) Find the tension in the string.

5. A smooth sphere A, of mass 5 kg, collides directly with another smooth sphere B, of mass 2 kg, on a smooth horizontal table.

A and B are moving in the same direction with speeds of 4 m s⁻¹ and 1 m s⁻¹ respectively.

The coefficient of restitution for the collision is $\frac{1}{6}$.

- Find (i) the speed of A and the speed of B after the collision
 - (ii) the loss in kinetic energy due to the collision
 - (iii) the magnitude of the impulse imparted to A due to the collision.

(i)
$$5(4)+2(1) = 5v_1+2(v_2)$$

 $22 = 5v_1+2v_2$
 $v_1 - v_2 = -e(4-1)$
 $= -\frac{1}{6}(3)$
 $= -\frac{1}{2}$
(ii) $KE_b = \frac{1}{2}(5)(4)^2 + \frac{1}{2}(2)(1)^2$
 $= 41$
 $KE_a = \frac{1}{2}(5)(3)^2 + \frac{1}{2}(2)(3\cdot5)^2$
 $= 34\cdot75$
 $KE_b - KE_a = 41-34\cdot75$
 $= 6\cdot25$ J
(iii) Impulse $= |(5)(3) - (5)(4)|$
 $= 5$ N s

6. (a) Particles of weight 4 N, 7 N, 3 N and 5 N are placed at the points (p, 2), (-6, 1), (9, q) and (12, 13), respectively.

The co-ordinates of the centre of gravity of the system are (p, q).

- Find (i) the value of p
 - (ii) the value of q.
- (b) A triangular lamina with vertices A, B and C has the portion inside its incircle (the circle that touches the three sides of the triangle) removed. D is the centre of the incircle. The co-ordinates of the points are A(0, 0), B(0, 27), C(36, 0) and D(9, 9).

Find the co-ordinates of the centre of gravity of the remaining lamina.

7. A uniform rod, [*AB*], of length 4 m and weight 80 N is smoothly hinged at end *A* to a horizontal floor.

One end of a light inelastic string is attached to *B* and the other end of the string is attached to a horizontal ceiling.

The string makes an angle of 60° with the ceiling and the rod makes an angle of 30° with the floor, as shown in the diagram.

The rod is in equilibrium.

- (i) Show on a diagram all the forces acting on the rod [AB].
- (ii) Write down the two equations that arise from resolving the forces horizontally and vertically.
- (iii) Write down the equation that arises from taking moments about the point A.
- (iv) Find the tension in the string.
- (v) Find the magnitude of the reaction at the hinge, A.

- 8. (a) A particle describes a horizontal circle of radius 2 metres with uniform angular velocity ω radians per second. Its speed is 6 m s⁻¹ and its mass is 4 kg.
 - Find (i) the value of ω
 - (ii) the centripetal force on the particle.
 - (b) A hemispherical bowl of diameter 20 cm is fixed to a horizontal surface.

A smooth particle of mass 1 kg describes a horizontal circle of radius r cm on the smooth inside surface of the bowl.

The plane of the circular motion is 4 cm above the horizontal surface. Find (i) the value of r

- (i) the value of r(ii) the reaction force between the particle
 - and the surface of the bowl
 - (iii) the angular velocity of the particle.

(a)

(b)

50

10

 $\omega = 12.9$

- 9. (a) State the Principle of Archimedes. A solid piece of metal has a weight of 26 N. When it is completely immersed in water the metal weighs 21 N. Find (i) the volume of the metal
 - (ii) the relative density of the metal.
 - (b) A right circular solid cylinder has a base of radius 8 cm and a height of 18 cm.

The relative density of the cylinder is 3 and it is completely immersed in a tank of liquid of relative density 0.9.

The cylinder is held at rest by a light inextensible vertical string which is attached to a fixed point *P*. The upper surface of the cylinder is horizontal. Find the tension in the string.

[Density of water = 1000 kg m^{-3}].

(a)

(u)	Principle of Archimedes	5	
	(i) $B = \rho V g$		
	$5 = 1000 \times V \times 10$		
	$V = 0.0005 \text{ m}^{-3}$	10	
	(ii) $26 = W$		
	$26 = \rho V g$		
	$26 = 1000s \times 0.0005 \times 10$		
	s = 5.2	10	
(b)			
	$B = 900 \left\{ \pi \times (0.08)^2 \times 0.18 \right\} (10)$	10	
	$=10.368\pi$		
	$W = 3000 \left\{ \pi \times (0.08)^2 \times (0.18) \right\} (10)$	10	
	$=34.56\pi$		
	T + B = W		
	$T = 34.56\pi - 10.368\pi$	5	50